On Completeness of SDP-Based Barrier Certificate Synthesis over Unbounded Domains

Author:

Wu HaoORCID,Feng ShenghuaORCID,Gan TingORCID,Wang JieORCID,Xia BicanORCID,Zhan NaijunORCID

Abstract

AbstractBarrier certificates, serving as differential invariants that witness system safety, play a crucial role in the verification of cyber-physical systems (CPS). Prevailing computational methods for synthesizing barrier certificates are based on semidefinite programming (SDP) by exploiting Putinar Positivstellensatz. Consequently, these approaches are limited by the Archimedean condition, which requires all variables to be bounded, i.e., systems are defined over bounded domains. For systems over unbounded domains, unfortunately, existing methods become incomplete and may fail to identify potential barrier certificates.In this paper, we address this limitation for the unbounded cases. We first give a complete characterization of polynomial barrier certificates by using homogenization, a recent technique in the optimization community to reduce an unbounded optimization problem to a bounded one. Furthermore, motivated by this formulation, we introduce the definition of homogenized systems and propose a complete characterization of a family of non-polynomial barrier certificates with more expressive power. Experimental results demonstrate that our two approaches are more effective while maintaining a comparable level of efficiency.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3