1. Akidau, T., et al.: MillWheel: fault-tolerant stream processing at internet scale. Proc. VLDB Endow. 6(11), 1033–1044 (2013)
2. Awad, A., Traub, J., Sakr, S.: Adaptive watermarks: a concept drift-based approach for predicting event-time progress in data streams. In: EDBT, pp. 622–625 (2019)
3. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas, K.: State management in Apache Flink®: consistent stateful distributed stream processing. Proc. VLDB Endow. 10(12), 1718–1729 (2017)
4. Carbone, P., et al.: Large-scale data stream processing systems. In: Zomaya, A.Y., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 219–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49340-4_7
5. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink: stream and batch processing in a single engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 36(4), 28 (2015)