Abstract
AbstractWe show that the problem of checking if a given nondeterministic parity automaton simulates another given nondeterministic parity automaton is NP-hard. We then adapt the techniques used for this result to show that the problem of checking history-determinism for a given parity automaton is NP-hard. This is an improvement from Kuperberg and Skrzypczak’s previous lower bound of solving parity games from 2015. We also show that deciding if Eve wins the one-token game or the two-token game of a given parity automaton is NP-hard. Finally, we show that the problem of deciding if the language of a nondeterministic parity automaton is contained in the language of a history-deterministic parity automaton can be solved in quasi-polynomial time.
Publisher
Springer Nature Switzerland
Reference39 articles.
1. Abdulla, P.A., Chen, Y., Clemente, L., Holík, L., Hong, C., Mayr, R., Vojnar, T.: Advanced ramsey-based büchi automata inclusion testing. In: CONCUR. Lecture Notes in Computer Science, vol. 6901, pp. 187–202. Springer (2011), https://doi.org/10.1007/978-3-642-23217-6_13
2. Abu Radi, B., Kupferman, O.: Minimization and canonization of GFG transition-based automata. Log. Methods Comput. Sci. 18(3) (2022), https://doi.org/10.46298/lmcs-18(3:16)2022
3. Bagnol, M., Kuperberg, D.: Büchi good-for-games automata are efficiently recognizable. In: FSTTCS. LIPIcs, vol. 122, pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018), https://doi.org/10.4230/LIPIcs.FSTTCS.2018.16
4. Boker, U., Kuperberg, D., Lehtinen, K., Skrzypczak, M.: On the succinctness of alternating parity good-for-games automata. CoRR abs/2009.14437 (2020), https://arxiv.org/abs/2009.14437
5. Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are good-for-games automata? In: FSTTCS. LIPIcs, vol. 93, pp. 18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017), https://doi.org/10.4230/LIPIcs.FSTTCS.2017.18