Automatic Detection of Cervical Cells Using Dense-Cascade R-CNN
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-60639-8_50
Reference13 articles.
1. Wang, P., Wang, L., Li, Y., Song, Q., Lv, S., Hu, X.: Automatic cell nuclei segmentation and classification of cervical pap smear images. Biomed. Sig. Process. Control 48, 93–103 (2019)
2. Kurnianingsih, et al.: Segmentation and classification of cervical cells using deep learning. IEEE Access 7, 116925–116941 (2019)
3. Sompawong, N., et al.: Automated pap smear cervical cancer screening using deep learning. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7044–7048. Institute of Electrical and Electronics Engineers Inc., Berlin (2019)
4. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944. Institute of Electrical and Electronics Engineers Inc., Honolulu (2017)
5. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-Training-Transductive-Learning Broad Learning System (STTL-BLS): A model for effective and efficient image classification;Pattern Recognition;2024-12
2. Distillation of multi-class cervical lesion cell detection via synthesis-aided pre-training and patch-level feature alignment;Neural Networks;2024-10
3. Interpretable detector for cervical cytology using self-attention and cell origin group guidance;Engineering Applications of Artificial Intelligence;2024-08
4. Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction;Bioengineering;2024-07-05
5. TSO-DETR: A Network for Small Object Detection of Cervical Cells in TCT Smear;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3