Fast Symbolic Computation of Bottom SCCs

Author:

Jakobsen Anna BlumeORCID,Jørgensen Rasmus Skibdahl Melanchton,van de Pol JacoORCID,Pavlogiannis AndreasORCID

Abstract

AbstractThe computation of bottom strongly connected components (BSCCs) is a fundamental task in model checking, as well as in characterizing the attractors of dynamical systems. As such, symbolic algorithms for BSCCs have received special attention, and are based on the idea that the computation of an SCC can be stopped early, as soon as it is deemed to be non-bottom.In this paper we introduce $$\textsc {Pendant}$$ P E N D A N T , a new symbolic algorithm for computing BSCCs which runs in linear symbolic time. In contrast to the standard approach of escaping non-bottom SCCs, $$\textsc {Pendant}$$ P E N D A N T aims to start the computation from nodes that are likely to belong to BSCCs, and thus is more effective in sidestepping SCCs that are non-bottom. Moreover, we employ a simple yet powerful deadlock-detection technique, that quickly identifies singleton BSCCs before the main algorithm is run. Our experimental evaluation on three diverse datasets of 553 models demonstrates the efficacy of our two methods: $$\textsc {Pendant}$$ P E N D A N T is decisively faster than the standard existing algorithm for BSCC computation, while deadlock detection improves the performance of each algorithm significantly.

Publisher

Springer Nature Switzerland

Reference34 articles.

1. EMBL-EBI’s BioModels model repository (2023), https://www.ebi.ac.uk/biomodels/, Last accessed on 2023-10-10

2. PyBoolNet model repository (2023), https://github.com/hklarner/pyboolnet/tree/master/pyboolnet/repository, Last accessed on 2023-10-10

3. SBML models repository (2023), https://github.com/sybila/biodivine-lib-param-bn/tree/master/sbml_models, Last accessed 2023-10-10

4. Abraham, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model checking by SCC reduction. In: Proceedings of the 2010 Seventh International Conference on the Quantitative Evaluation of Systems. p. 37–46. QEST ’10, IEEE Computer Society, USA (2010). https://doi.org/10.1109/QEST.2010.13

5. Amparore, E.G., Donatelli, S., Gallà, F.: starMC: an automata based CTL* model checker. PeerJ Comput. Sci. 8,  e823 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3