Training for Verification: Increasing Neuron Stability to Scale DNN Verification

Author:

Xu DongORCID,Mozumder Nusrat JahanORCID,Duong HaiORCID,Dwyer Matthew B.ORCID

Abstract

AbstractWith the growing use of deep neural networks(DNN) in mission and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network structures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremendous advances, DNN verifiers are still challenged to scale to large verification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verification complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromising model accuracy and this yields a multi-fold improvement in DNN verifier performance.

Publisher

Springer Nature Switzerland

Reference59 articles.

1. Bak, S.: Execution-guided overapproximation (ego) for improving scalability of neural network verification. In: International Workshop on Verification of Neural Networks (2020)

2. Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498 (2021)

3. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for verifying relu neural networks. In: International Conference on Computer Aided Verification. pp. 66–96. Springer (2020)

4. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification for deep neural networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). pp. 312–323. IEEE (2021)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. Advances in neural information processing systems 29 (2016)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Neuron Stability to Improve DNN Verification;Proceedings of the ACM on Software Engineering;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3