1. Boyle, P., Levin, B., et al.: World cancer report 2008. IARC Press, International Agency for Research on Cancer (2008)
2. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Metwally, M.K., Kadah, Y.M., Han, S.M., Kim, T.-S.: An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J. Med. Biol. Eng. 38(3), 443–456 (2017)
3. Al-masni, M., Al-antari, M., Park, J., Gi, G., Kim, T., Rivera, P., Valarezo, E., Han, S.-M., Kim, T.-S.: Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017), Jeju Island, South Korea, pp. 1230–1236(2017)
4. Al-masni, M.A., Al-antari, M., Park, J.-M.P., Gi, G., Kim, T.-Y.K., Rivera, P., Valarezo, E., Choi, M.-T., Han, S.-M., Kim, T.-S.: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018)
5. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Kadah, Y.M., Han, S.M., Kim, T.S.: Automatic computer-aided diagnosis of breast cancer in digital mammograms via deep belief network. In: Global Conference on Engineering and Applied Science (GCEAS), Japan, pp. 1306–1314 (2016)