Publisher
Springer International Publishing
Reference36 articles.
1. Alber, M.: Software and application patterns for explanation methods. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 399–433 (2019)
2. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. arXiv:1711.06104 (2017)
3. Anders, C., Weber, L., Neumann, D., Samek, W., Müller, K., Lapuschkin, S.: Finding and removing Clever Hans: using explanation methods to debug and improve deep models. Inf. Fusion, 261–295 (2022)
4. Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion, 14–40 (2022)
5. Aubry, M.: Deep learning for historical data analysis. In: SUMAC (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献