1. Arroyo CP, Dombard J, Duchaine F, Gicquel L, Martin B, Odier N, Staffelbach G (2021a) Towards the large-eddy simulation of a full engine: integration of a 360 azimuthal degrees fan, compressor and combustion chamber. Part ii: comparison against stand-alone simulations. J Glob Power Propuls Soc Spec Issue (May):1–16. https://doi.org/10.33737/jgpps/133116
2. Arroyo CP, Dombard J, Duchaine F, Gicquel L, Martin B, Odier N, Staffelbach G (2021b) Towards the large-eddy simulation of a full engine: Integration of a 360 azimuthal degrees fan, compressor and combustion chamber. Part ii: comparison against stand-alone simulations. J Glob Power Propuls Soc (May)1–16. https://doi.org/10.33737/jgpps/133116
3. Attili A, Sorace N, Nista L, Schumann C, Karimi A (2021) Investigation of the extrapolation performance of machine learning models for les of turbulent premixed combustion. In: Proceedings European combustion meeting, pp 349–354
4. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y, Pascanu R (2018) Relational inductive biases, deep learning, and graph networks. CoRR. arXiv:abs/1806.01261
5. Bode M, Gauding M, Lian Z, Denker D, Davidovic M, Kleinheinz K, Jitsev J, Pitsch H (2021) Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proc Combust Inst 38(2):2617–2625. https://doi.org/10.1016/j.proci.2020.06.022