Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling

Author:

Xing V.,Lapeyre C. J.

Abstract

AbstractSubgrid-scale flame wrinkling is a key unclosed quantity for premixed turbulent combustion models in large eddy simulations. Due to the geometrical and multi-scale nature of flame wrinkling, convolutional neural networks are good candidates for data-driven modeling of flame wrinkling. This chapter presents how a deep convolutional neural network called a U-Net is trained to predict the total flame surface density from the resolved progress variable. Supervised training is performed on a database of filtered and downsampled direct numerical simulation fields. In an a priori evaluation on a slot burner configuration, the network outperforms classical dynamic models. In closing, challenges regarding the ability of deep convolutional networks to generalize to unseen configurations and their practical deployment with fluid solvers are discussed.

Publisher

Springer International Publishing

Reference93 articles.

1. Arroyo CP, Dombard J, Duchaine F, Gicquel L, Martin B, Odier N, Staffelbach G (2021a) Towards the large-eddy simulation of a full engine: integration of a 360 azimuthal degrees fan, compressor and combustion chamber. Part ii: comparison against stand-alone simulations. J Glob Power Propuls Soc Spec Issue (May):1–16. https://doi.org/10.33737/jgpps/133116

2. Arroyo CP, Dombard J, Duchaine F, Gicquel L, Martin B, Odier N, Staffelbach G (2021b) Towards the large-eddy simulation of a full engine: Integration of a 360 azimuthal degrees fan, compressor and combustion chamber. Part ii: comparison against stand-alone simulations. J Glob Power Propuls Soc (May)1–16. https://doi.org/10.33737/jgpps/133116

3. Attili A, Sorace N, Nista L, Schumann C, Karimi A (2021) Investigation of the extrapolation performance of machine learning models for les of turbulent premixed combustion. In: Proceedings European combustion meeting, pp 349–354

4. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y, Pascanu R (2018) Relational inductive biases, deep learning, and graph networks. CoRR. arXiv:abs/1806.01261

5. Bode M, Gauding M, Lian Z, Denker D, Davidovic M, Kleinheinz K, Jitsev J, Pitsch H (2021) Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proc Combust Inst 38(2):2617–2625. https://doi.org/10.1016/j.proci.2020.06.022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements in large eddy simulations of compressible real gas flows;Computational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title];2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3