1. Chopin, N., & Gerber, M. (2018). Sequential quasi–Monte Carlo: Introduction for non-experts, dimension reduction, application to partly observed diffusion processes. In Monte Carlo and quasi–Monte Carlo methods. Springer proceedings in mathematics & statistics (Vol. 241, pp. 99–121). Cham: Springer.
2. Gerber, M., & Chopin, N. (2015). Sequential quasi Monte Carlo. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(3), 509–579.
3. Gerber, M., & Chopin, N. (2017). Convergence of sequential quasi-Monte Carlo smoothing algorithms. Bernoulli, 23(4B), 2951–2987.
4. Glasserman, P. (2004). Monte Carlo methods in financial engineering. Applications of mathematics (New York) (Vol. 53). New York: Springer. Stochastic Modelling and Applied Probability.
5. Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F - Communications, Radar and Signal Processing, 140(2), 107–113.