Weakly Supervised Claim Localization in Scientific Abstracts

Author:

Brinner MarcORCID,Zarrieß SinaORCID,Heger TinaORCID

Abstract

AbstractWe explore the possibility of leveraging model explainability methods for weakly supervised claim localization in scientific abstracts. The resulting approaches require only abstract-level supervision, i.e., information about the general presence of a claim in a given abstract, to extract spans of text that indicate this specific claim. We evaluate our methods on the SciFact claim verification dataset, as well as on a newly created dataset that contains expert-annotated evidence for scientific hypotheses in paper abstracts from the field of invasion biology. Our results suggest that significant performance in the claim localization task can be achieved without any explicit supervision, which increases the transferability to new domains with limited data availability. In the course of our experiments, we additionally find that injecting information from human evidence annotations into the training of a neural network classifier can lead to a significant increase in classification performance.

Publisher

Springer Nature Switzerland

Reference42 articles.

1. Accuosto, P., Neves, M.L., Saggion, H.: Argumentation mining in scientific literature: from computational linguistics to biomedicine. In: BIR@ECIR (2021)

2. Blake, C.: Beyond genes, proteins, and abstracts: identifying scientific claims from full-text biomedical articles. J. Biomed. Inform. 43(2), 173–189 (2010). https://doi.org/10.1016/j.jbi.2009.11.001

3. Brinner, M., Heger, T., Zarriess, S.: Linking a hypothesis network from the domain of invasion biology to a corpus of scientific abstracts: the INAS dataset. In: Proceedings of the first Workshop on Information Extraction from Scientific Publications, pp. 32–42. Association for Computational Linguistics (2022)

4. Brinner, M., Zarrieß, S.: Model interpretability and rationale extraction by input mask optimization. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 13722–13744. Association for Computational Linguistics (2023). https://doi.org/10.18653/v1/2023.findings-acl.867

5. Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009). https://doi.org/10.1016/j.cor.2008.04.004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3