Machine Learning-Based Identification of Root Causes for Defective Units in Manufacturing Processes

Author:

Rotter Dominik,Liebgott Florian,Kessler Daniel,Liebgott Annika,Yang Bin

Abstract

AbstractTo achieve a high overall equipment effectiveness in a manufacturing process, reducing the number of defective units is crucial. It is therefore vital to identify the root causes of defects to be able to rectify them. However, the analysis of defective units can be a time-consuming and costly task.By using machine learning, we can leverage data of the manufacturing process, like process states and different measurement values, to identify the root causes for the defects. We propose to use this data as features for the classification of a unit as defective or as belonging to a specific defect class. We can then identify the root causes for the defects by calculating the importance of the features.In this paper, we compare our feature-based approach with deep learning methods based on the attention mechanism. The evaluation of our approach on data of a complex production process shows, that our approach clearly outperforms the deep learning methods. It also revealed the challenges in the collection of meaningful data

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3