Improvement of the Scheduling of Automotive Testing Processes Based on Production Scheduling Methods

Author:

Stütz LeonORCID,König TimoORCID,Bader Roman,Kley MarkusORCID

Abstract

AbstractIncreasing challenges in the automotive industry are caused by shorter development times for products, greater diversity of variants and increasing cost pressure. Testing plays an elementary role within the product development process (PDP). There are already many publications that deal with the early phases of the PDP, but relatively few that address testing. Inefficient scheduling leads to suboptimal use of development and testing resources.Automotive testing is characterized by high momentum and process complexity. The complexity of testing is determined, among other things, by the number of test rigs in a test field, the number and diversity of test objects, the type of testing and the preparatory setups. In addition, complex testing processes at the component and system level require a large number of human and material resources, whose time availability and sequence must be coordinated with the testing process. The sequence planning is subject to a high inherent dynamic because unexpected changes and disturbances of the process can occur during the testing. These changes require a rescheduling of the testing process. If done manually, the rescheduling results in high costs.Based on known production planning methods, a solution approach is derived for improved utilization of test field resources for the automotive sector. The planning is optimized with a multitude of product - and process-related dependencies and restrictions using mixed-integer linear programming, a standardized method from operations research. The test field is simulated via a discrete event simulation. The proposed method considers the availability of essential resources.

Publisher

Springer International Publishing

Reference26 articles.

1. Institute of Electrical and Electronics Engineers, IEEE Standard for software verification and validation. Institute of Electrical and Electronics Engineers, New York (1998)

2. Klos, W., Schenk, M., Schwämmle, T., Müller, M., Bertsche, B.: Antriebsstrangerprobung bei der Daimler AG. Moderne Erprobungsmethodik. Internationales Symposium für Entwicklungsmethodik (2011)

3. Schenk, M.: Adaptives Prüfstandsverhalten in der PKW-Antriebstrangerprobung. Dissertation, Universität Stuttgart, Stuttgart (2017)

4. Karthaus, C.A.: Methode zur Rückführung von Erprobungswissen in die Produktentwicklung am Beispiel Fahrzeugtriebstrang. Dissertation, Institut für Konstruktionstechnik und Technisches Design, Universität Stuttgart, Stuttgart (2020)

5. Palm, D., et al.: Datengetriebene Produktionsoptimierung in der Montage. Zeitschrift für wirtschaftlichen Fabrikbetrieb 113(7–8), 518–521 (2018). https://doi.org/10.3139/104.111954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3