1. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z.: Differentiable convex optimization layers. In: Advances in Neural Information Processing Systems, pp. 9562–9574 (2019)
2. Agrawal, A., Barratt, S., Boyd, S., Busseti, E., Moursi, W.M.: Differentiating through a cone program. arXiv:1904.09043 (2019)
3. Amos, B., Kolter, J.Z.: OptNet: Differentiable optimization as a layer in neural networks. In: International Conference on Machine Learning, pp. 136–145. PMLR (2017)
4. Argáez, M., Tapia, R.A.: On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming. J. Optim. Theory Appl. 114(1), 1–25 (2002)
5. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (2014)