1. Al-Kuraya, K., Schraml, P., Torhorst, J., Tapia, C., Zaharieva, B., Novotny, H., Spichtin, H., Maurer, R., Mirlacher, M., Köchli, O. and Zuber, M. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer research, 64(23), 8534–8540 (2004)
2. Ardanza-Trevijano, S., Gonzalez G., Borrman T., Garcia J.L., Arsuaga J. Topological analysis of amplicon structure in Comparative Genomic Hybridization (CGH) data: an application to ERBB2/HER2/NEU amplified tumors. In: Bac A., Mari J.L. (eds.) International Workshop on Computational Topology in Image Context. 6th International Workshop, CTIC 2016, Marseille, France, June 15–17. Lecture Notes in Computer Science vol. 9667, pp. 113–129. Springer, Cham. (2016)
3. Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., Park, C. Identification of copy number aberrations in breast cancer subtypes using persistence topology. Microarrays 4 (3), 339–69 (2015)
4. Bauer, K.R., Brown, M., Cress, R.D., Parise, C. A., & Caggiano, V.: Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109 (9), 1721–1728 (2007)
5. Bauer U: Ripser: a lean c+ + code for the computation of vietoris-rips persistence barcodes.
https://github.com/Ripser/ripser
(2017).