1. Ahn, J.K., Lee, K.Y., Sim, J.Y., Kim, C.S.: Large-scale 3d point cloud compression using adaptive radial distance prediction in hybrid coordinate domains. IEEE J. Sel. Topics Signal Process. 9(3), 422–434 (2014)
2. Biswas, S., Liu, J., Wong, K., Wang, S., Urtasun, R.: Muscle: multi sweep compression of lidar using deep entropy models. arXiv preprint arXiv:2011.07590 (2020)
3. Cao, C., Preda, M., Zaharia, T.: 3D point cloud compression: a survey. In: The 24th International Conference on 3D Web Technology, pp. 1–9 (2019)
4. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)
5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)