Improving the Accuracy of Energy Predictive Models for Multicore CPUs Using Additivity of Performance Monitoring Counters

Author:

Shahid ArsalanORCID,Fahad MuhammadORCID,Manumachu Ravi ReddyORCID,Lastovetsky AlexeyORCID

Publisher

Springer International Publishing

Reference28 articles.

1. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 12, 33–37 (2007)

2. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology to predict the power consumption of servers in data centres. In: 2nd International Conference on Energy-Efficient Computing and Networking. ACM (2011)

3. DOE: The opportunities and challenges of exascale computing (2010). http://science.energy.gov/~/media/ascr//pdf/reports/Exascale_subcommittee_report.pdf

4. Dolz, M.F., Kunkel, J., Chasapis, K., Catalán, S.: An analytical methodology to derive power models based on hardware and software metrics. Comput. Sci.-Res. Dev. 31(4), 165–174 (2016)

5. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power analysis and modeling for server environments. In: In Proceedings of Workshop on Modeling, Benchmarking, and Simulation, pp. 70–77 (2006)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flydeling: Streamlined Performance Models for Hardware Acceleration of CNNs through System Identification;ACM Transactions on Modeling and Performance Evaluation of Computing Systems;2023-07-18

2. Energy-Efficient Parallel Computing: Challenges to Scaling;Information;2023-04-20

3. Fine-Grained Power Modeling of Multicore Processors Using FFNNs;International Journal of Parallel Programming;2022-03-29

4. Improving the accuracy of energy predictive models for multicore CPUs by combining utilization and performance events model variables;Journal of Parallel and Distributed Computing;2021-05

5. A Lightweight Nonlinear Methodology to Accurately Model Multicore Processor Power;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3