1. J. Abernethy, E. Hazan, A. Rakhlin, Competing in the dark: an efficient algorithm for bandit linear optimization English (US), in 21st Annual Conference on Learning Theory (COLT 2008) (2008), pp. 263–273
2. K. Ahn, S. Chewi, Efficient constrained sampling via the mirror-Langevin algorithm (2021). arXiv:2010.16212
3. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Second Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 2008), pp. x+334
4. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348 (Springer, Cham, 2014), pp. xx+552
5. F. Barthe, D. Cordero-Erausquin, Invariances in variance estimates. Proc. Lond. Math. Soc. 106(1), 33–64 (2013)