1. Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., Polychroniadou, A.: Prio+: privacy preserving aggregate statistics via Boolean shares. Cryptology ePrint Archive, Paper 2021/576 (2021). https://eprint.iacr.org/2021/576
2. Lecture Notes in Computer Science;E Ben-Sasson,2012
3. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge proofs on secret-shared data via fully linear PCPs. Cryptology ePrint Archive, Report 2019/188 (2019). https://eprint.iacr.org/2019/188
4. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: 14th $$\{$$USENIX$$\}$$ Symposium on Networked Systems Design and Implementation ($$\{$$NSDI$$\}$$ 17), pp. 259–282 (2017). https://crypto.stanford.edu/prio/paper.pdf
5. Lecture Notes in Computer Science;R Cramer,2005