Author:
Rosolem Ciro A.,Mallarino Antonio P.,Nogueira Thiago A. R.
Abstract
AbstractPotassium (K) is found in plants as a free ion or in weak complexes. It is easily released from living or decomposing tissues, and it should be considered in fertilization programs. Several factors affect K cycling in agroecosystems, including soil and fertilizer K contributions, plant K content and exports, mineralization rates from residues, soil chemical reactions, rainfall, and time. Soil K+ ions can be leached, remain as exchangeable K, or migrate to non-exchangeable forms. Crop rotations that include vigorous, deep-rooted cover crops capable of exploring non-exchangeable K in soil are an effective strategy for recycling K and can prevent leaching below the rooting zone in light-textured soils. The amount of K released by cover crops depends on biomass production. Potassium recycled with non-harvested components of crops also varies greatly. Research with maize, soybean, and wheat has shown that 50–60% of K accumulated in vegetative tissues is released within 40–45 days. A better understanding of K cycling would greatly improve the efficacy of K management for crop production. When studying K cycling in agricultural systems, it is important to consider: (1) K addition from fertilizers and organic amendments; (2) K left in residues; (3) K partitioning differences among species; (4) soil texture; (5) soil pools that act as temporary sources or sinks for K. In this chapter, the role of cash and cover crops and organic residues on K cycling are explored to better understand how these factors could be integrated into making K fertilizer recommendations.
Publisher
Springer International Publishing
Reference64 articles.
1. Abreu-Junior CH, Nogueira TAR, Oliveira FC et al (2008) Aproveitamento agrícola de resíduos no canavial. In: Marques MO, Mutton MA, Nogueira TAR et al (eds) Tecnologias na agroindústria canavieira. FCAV, Jaboticabal, pp 183–210. https://www.alice.cnptia.embrapa.br/bitstream/doc/16271/1/2008CL47.pdf. Accessed 21 May 2020
2. Almeida-Júnior AB, Nascimento CWA, Sobral MF et al (2011) Fertilidade do solo e absorção de nutrientes em cana-de-açúcar fertilizada com torta de filtro. Rev Brasil de Eng Agríc e Ambient 15(10):1004–1013. https://doi.org/10.1590/S1415-43662011001000003
3. Ambrosano EJ, Foltran DE, Camargo MS et al (2013) Mass and nutrient accumulation by green manures and sugarcane plant yield grown in succession, in two locations of Sao Paulo, Brazil. Rev Brasil de Agroecol 8(1):199–209. http://revistas.aba-agroecologia.org.br/index.php/rbagroecologia/article/view/12944. Accessed 21 May 2020
4. Askegaard M, Eriksen J, Johnston AE (2004) Sustainable management of potassium. In: Schjorring P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CABI, Wallingford, pp 85–102. https://www.cabi.org/bookshop/book/9780851996714. Accessed 21 May 2020
5. Barros I, Williams JR, Gaiser T (2004) Modeling soil nutrient limitations to crop production in semiarid NE of Brazil with a modified EPIC version. I. Changes in the source code of the model. Ecol Model 178:441–456. https://doi.org/10.1016/j.ecolmodel.2004.04.015
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献