1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)
2. Addisie, A., Kassa, H., Matthews, O., Bertacco, V.: Heterogeneous memory subsystem for natural graph analytics. In: 2018 IEEE International Symposium on Workload Characterization (IISWC), pp. 134–145. IEEE, Piscataway (2018)
3. Agrawal, A., Lee, S.K., Silberman, J., Ziegler, M., Kang, M., Venkataramani, S., Cao, N., Fleischer, B., Guillorn, M., Cohen, M., et al.: 9.1 a 7 nm 4-core AI chip with 25.6 TFLOPS hybrid FP8 training, 102.4 TOPS INT4 inference and workload-aware throttling. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 144–146. IEEE, Piscataway (2021)
4. Al-Abbasi, A.O., Hamila, R., Bajwa, W.U., Al-Dhahir, N.: A general framework for the design and analysis of sparse FIR linear equalizers. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 834–838. IEEE, Piscataway (2015)
5. Arora, A., Mehta, S., Betz, V., John, L.K.: Tensor slices to the rescue: Supercharging ml acceleration on fpgas. In: The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 23–33 (2021)