1. Rendondo, R., Marcos V.: Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Comput. Electron. Agric. 110, 56–69 (2017). https://www.sciencedirect.com/science/journal/01681699/
2. Chica, M.: Standard methods for inexpensive pollen loads authentication by means of computer vision and machine learning. https://www.arxiv.org/ftp/arxiv/papers/1511/1511.04320.pdf (2017)
3. Chica, M., Campoy, P.: Discernment of bee pollen loads using computer vision and oneclass classification techniques. J. Food Eng. 112, 50–59 (2012)
4. Xanjina, N.Y., Zamyatina, Y.B.: Ispolzovaniye klassicheskix metodov i neyronnix setey dlya raspoznavaniya pilsevix zeren.Vestnik Permskogo universiteta. Matematika. Mexanika. Informatika. 4(23), 111–119 (2013)
5. Chernix, A.S., Zamyatina, Y.B.: Issledovaniye vozmojnosti primeneniya ryada klassicheskix metodov dlya raspoznavaniya pilsevix zeren. Perm: Izd-vo Perm. gos. nas. issled. un-ta, (2012)