1. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partitioning into automated physical database design. In: SIGMOD, pp. 359–370. ACM (2004)
2. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforcement learning. In: ICML, pp. 449–458 (2017)
3. Durand, G.C., Pinnecke, M., Piriyev, R., et al.: GridFormation: towards self-driven online data partitioning using reinforcement learning. In: AIDM@SIGMOD, p. 1. ACM (2018)
4. Castro, P.S., Moitra, S., Gelada, C., et al.: Dopamine: a research framework for deep reinforcement learning (2018). arXiv preprint
arXiv:1812.06110
5. Dabney, W., Ostrovski, G., Silver, D., et al.: Implicit quantile networks for distributional reinforcement learning (2018). arXiv preprint
arXiv:1806.06923