1. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-How easy is it to break privacy in federated learning? Adv. Neural. Inf. Process. Syst. 33, 16937–16947 (2020)
2. Song, M., Wang, Z., Zhang, Z., Song, Y., Wang, Q., Ren, J., Qi, H.: Analyzing user-level privacy attack against federated learning. IEEE J. Sel. Areas Commun. 38(10), 2430–2444 (2020)
3. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)
4. Wan, X., Zheng, Y., Li, Q., Fu, A., Su, M., Gao, Y.: Towards privacy-preserving and verifiable federated matrix factorization. Knowl. Based Syst. 250, 109193 (2022)
5. Zhang, H., Luo, F., Wu, J., He, X., Li, Y.: LightFR: lightweight federated recommendation with privacy-preserving matrix factorization. ACM Trans. Inf. Syst. 41(4), 1–28 (2023)