Toward a Stochastic Parameterization for Oceanic Deep Convection

Author:

Jamet Quentin,Mémin Etienne,Dumas Franck,Li Long,Garreau Pierre

Abstract

AbstractCurrent climate models are known to systematically overestimate the rate of deep water formation at high latitudes in response to too deep and too frequent deep convection events. We propose in this study to investigate a misrepresentation of deep convection in Hydrostatic Primitive Equation (HPE) ocean and climate models due to the lack of constraints on vertical dynamics. We discuss the potential of the Location Uncertainty (LU) stochastic representation of geophysical flow dynamics to help in the process of re-introducing some degree of non-hydrostatic physics in HPE models through a pressure correction method. We then test our ideas with idealized Large Eddy Simulations (LES) of buoyancy driven free convection with the CROCO modeling platform. Preliminary results at LES resolution exhibit a solution obtained with our Quasi-nonhydrostatic (Q-NH) model that tends toward the reference non-hydrostatic (NH) model. As compared to a pure hydrostatic setting, our Q-NH solution exhibits vertical convective plumes with larger horizontal structure, a better spatial organization and a reduced intensity of their associated vertical velocities. The simulated Mixed Layer Depth (MLD) deepening rate is however too slow in our Q-NH experiment as compared to the reference NH, a behaviour that opposes to that of hydrostatic experiments of producing too fast MLD deepening rate. These preliminary results are encouraging, and support future efforts in the direction of enriching coarse resolution, hydrostatic ocean and climate models with a stochastic representation of non-hydrostatic physics.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3