A Decision Tree Lifted Domain for Analyzing Program Families with Numerical Features

Author:

Dimovski Aleksandar S.ORCID,Apel SvenORCID,Legay AxelORCID

Abstract

AbstractLifted (family-based) static analysis by abstract interpretation is capable of analyzing all variants of a program family simultaneously, in a single run without generating any of the variants explicitly. The elements of the underlying lifted analysis domain are tuples, which maintain one property per variant. Still, explicit property enumeration in tuples, one by one for all variants, immediately yields combinatorial explosion. This is particularly apparent in the case of program families that, apart from Boolean features, contain also numerical features with large domains, thus giving rise to astronomical configuration spaces.The key for an efficient lifted analysis is a proper handling of variability-specific constructs of the language (e.g., feature-based runtime tests and $$\texttt {\#if}$$ # if directives). In this work, we introduce a new symbolic representation of the lifted abstract domain that can efficiently analyze program families with numerical features. This makes sharing between property elements corresponding to different variants explicitly possible. The elements of the new lifted domain are constraint-based decision trees, where decision nodes are labeled with linear constraints defined over numerical features and the leaf nodes belong to an existing single-program analysis domain. To illustrate the potential of this representation, we have implemented an experimental lifted static analyzer, called SPLNum$$^2$$ 2 Analyzer, for inferring invariants of C programs. An empirical evaluation on BusyBox and on benchmarks from SV-COMP yields promising preliminary results indicating that our decision trees-based approach is effective and outperforms the baseline tuple-based approach.

Publisher

Springer International Publishing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3