Quantitative Assessment of Damage in Composites by Implementing Acousto-ultrasonics Technique

Author:

Prasad Kumar Shantanu,Jombo Gbanaibolou,Ismail Sikiru O.,Chen Yong K.,Dhakal Hom N.

Abstract

AbstractThis study focused on quantitative damage severity assessment in composite materials using Acousto-Ultrasonics (AU), an in-service and active non-destructive inspection technique in which Lamb waves are communicated through a damaged zone. This was done by activating a signal onto the composite material surface and acquiring the received waves after their interactions with the damage. It relied on early research that presented a series of stress wave factors (SWFs) derived from the frequency-domain of the AU data, as quantitative identifiers of the received signal. Although, the SWFs have previously been proven to determine the understanding of the spatial arrangements of the impact damage, the degree or severity of the damage inside the impact damage area has not been assessed. Therefore, the current research was a step in the right way toward that aim. AU waves were generated via a laminate with increasing concentrations of ply faults, across longitudinal length. The stress wave factors were first examined for an undamaged composite, and the SWFs were then connected with the fault concentration. The significance of the found linkages and the possible futures of quantitative assessment of the degree of damage by such relationships were examined. The stress wave factors showed clear and consistent patterns, as the fault concentration increased. With a rise in fault density, an element measuring the energy content of the waves significantly changed with R-sq(adj) = 91.33% and almost linearly, and provided a robust measurable trend, while other parameter exhibited lesser shifts with R-sq(adj) = 51.86%. The result obtained from the presented work provided a base to cost-effective and in-service measure to early detection of catastrophic failures in composite structures, including the wind turbine blades for renewable and sustainable energy generation.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3