Publisher
Springer Nature Switzerland
Reference40 articles.
1. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78. Association for Computational Linguistics, Minneapolis, Minnesota, USA, June 2019. https://doi.org/10.18653/v1/W19-1909
2. An, X., et al.: An active learning-based approach for screening scholarly articles about the origins of sars-cov-2. PLOS ONE 17, e0273725 (2022). https://doi.org/10.1371/journal.pone.0273725
3. Bakarov, A.: A survey of word embeddings evaluation methods. CoRR abs/1801.09536 (2018)
4. Beltagy, I., et al.: SciBERT: a pretrained language model for scientific text. In: EMNLP. Association for Computational Linguistics (2019). https://www.aclweb.org/anthology/D19-1371
5. Bhatia, P., et al.: AWS CORD19-search: A scientific literature search engine for COVID-19. CoRR abs/2007.09186 (2020)