Author:
Okello Wayne Steven,Nganyi Jared Kelvin,Muleme Gideon,Sinde Ramadhani,Sam Anael Elikana
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Yu, Z., Liu, W., Eti, L. C. S., Dinçer, H., & Yüksel, S. (2019). The effects of electricity production on industrial development and sustainable economic growth: A VAR analysis for BRICS countries. Sustainability, MDPI, 11(21), 13.
2. Chen, Y. Y., Lin, Y. H., Kung, C. C., Chung, M. H., & Yen, I. H. (2019). Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes. Sensors (Switzerland), 19(9), 2047. https://doi.org/10.3390/s19092047
3. Alani, A. Y., & Osunmakinde, I. O. (2017). Short-term multiple forecasting of electric energy loads for sustainable demand planning in smart grids for smart homes. Sustainability (Switzerland), 9(11), 1972. https://doi.org/10.3390/su9111972
4. Paredes-Valverde, M. A., Alor-Hernández, G., García-Alcaráz, J. L., Salas-Zárate, M. D. P., Colombo-Mendoza, L. O., & Sánchez-Cervantes, J. L. (2020). IntelliHome: An internet of things-based system for electrical energy saving in smart home environment. Computational Intelligence, 36(1), 203–224. https://doi.org/10.1111/coin.12252
5. Grimaldo, A. I., & Novak, J. (2020). Combining machine learning with visual analytics for explainable forecasting of energy demand in prosumer scenarios. Procedia Computer Science, 175, 525–532. https://doi.org/10.1016/j.procs.2020.07.074