1. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
2. Abolghasemi, M., Abbasi, B., Babaei, T., HosseiniFard, Z.: How to effectively use machine learning models to predict the solutions for optimization problems: lessons from loss function. arXiv preprint arXiv:2105.06618 (2021)
3. Akyol, D.E.: Application of neural networks to heuristic scheduling algorithms. Comput. Ind. Eng. 46(4), 679–696 (2004)
4. Asadi, N., Ghoreishi, S.F.: Bayesian state estimation in partially-observed dynamic multidisciplinary systems. Front. Aeros. Eng. 1, 1036642 (2022)
5. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)