Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-20257-6_3
Reference18 articles.
1. Alahakoon, D., Yu, X.: Smart electricity meter data intelligence for future energy systems: a survey (2016)
2. Wang, Y., Chen, Q., Hong, T., Kang, C.: Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans. Smart Grid PP(99), 1 (2018)
3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
4. P. A. Citipower: Demand Side Management Strategy (2016). Accessed 1 Mar 2019
5. Barton, J., et al.: The evolution of electricity demand and the role for demand side participation, in buildings and transport. Energy Policy 52(C), 85–102 (2013)
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-Term Load Foresting Using Combination of Linear and Non-Linear Models;IEEE Access;2024
2. Unsupervised Mixture Models on the Edge for Smart Energy Consumption Segmentation with Feature Saliency;Sensors;2023-10-07
3. Forecasting Electricity and District Heating Consumption: A Case Study in Schools in Sweden;2023 IEEE Green Technologies Conference (GreenTech);2023-04-19
4. An Insight of Deep Learning Based Demand Forecasting in Smart Grids;Sensors;2023-01-28
5. Application of Scheduling Techniques for Load-Shifting in Smart Homes with Renewable-Energy-Sources Integration;Buildings;2023-01-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3