Author:
Alves Guilherme,Bhargava Vaishnavi,Couceiro Miguel,Napoli Amedeo
Publisher
Springer International Publishing
Reference18 articles.
1. Bellamy, R.K.E., et al.: AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. ArXiv abs/1810.01943 (2018)
2. Bhargava, V., Couceiro, M., Napoli, A.: LimeOut: an ensemble approach to improve process fairness. In: Koprinska, I., et al. (eds.) ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol. 1323, pp. 475–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_32
3. Binns, R.: On the apparent conflict between individual and group fairness. In: FAT 2020, pp. 514–524 (2020)
4. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)
5. Cynthia, D., et al.: Fairness through awareness. In: Innovations in Theoretical Computer Science, pp. 214–226. ACM (2012)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献