Author:
Phan Lu Anh Duy,Ngo Ha Quang Thinh
Publisher
Springer Nature Switzerland
Reference75 articles.
1. Nguyen, H., La, H.: Review of deep reinforcement learning for robot manipulation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 590–595. IEEE (2019)
2. Ghadirzadeh, A., Chen, X., Yin, W., Yi, Z., Björkman, M., Kragic, D.: Human-centered collaborative robots with deep reinforcement learning. IEEE Robot. Autom. Lett. 6(2), 566–571 (2020)
3. Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., Fei-Fei, L.: Surreal: Open-source reinforcement learning framework and robot manipulation benchmark. In: Conference on Robot Learning, pp. 767–782. PMLR (2018)
4. Ribeiro, E.G., de Queiroz Mendes, R., Grassi, V., Jr.: Real-time deep learning approach to visual servo control and grasp detection for autonomous robotic manipulation. Robot. Auton. Syst. 139, 103757 (2021)
5. Ngo, H.Q.T., Bui, T.T.: Application of the image processing technique for powerline robot. In: Phan, C.V., Nguyen, T.D. (eds.) Context-Aware Systems and Applications: 11th EAI International Conference, ICCASA 2022, Vinh Long, Vietnam, October 27-28, 2022, Proceedings, pp. 178–189. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-28816-6_14