Interaction-Aware Motion Planning as a Game

Author:

Burger Christoph,Yan Shengchao,Burgard Wolfram,Stiller Christoph

Abstract

AbstractMotion planning for automated vehicles (AVs) in mixed traffic, where AVs share the road with human-driven vehicles, is a challenging task. To reduce the complexity, state-of-the-art planning approaches often assume that the future motion of surrounding vehicles can be predicted independently of the AV’s plan. This separation can lead to suboptimal, overly conservative behavior especially in highly interactive traffic situations. In this work, we introduce a motion planning algorithm to generate interaction-aware behavior for highly interactive scenarios. The presented algorithm is based upon a reformulation of a bi-level optimization problem, which frames interactions between a human driver and a AV as a Stackelberg game. In contrast to existing works, the algorithm can account for general nonlinear state and input constraints. Further, we introduce mechanisms to integrate cooperation and courtesy into motion planning to prevent overly aggressive driving behavior.

Publisher

Springer International Publishing

Reference42 articles.

1. Andersson, J.A.E. et al.: CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019). ISSN: 1867-2949, 1867-2957. https://doi.org/10.1007/s12532-018-0139-4

2. Bansal, S., et al.: Collaborative planning for mixed-autonomy lane merging. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, Oct. 2018, pp. 4449–4455 (2018). https://doi.org/10.1109/IROS.2018.8594197

3. Britzelmeier, A., Dreves, A., Gerdts, M.: Numerical solution of potential games arising in the control of cooperative automatic vehicles. In: 2019 Proceedings of the Conference on Control and Its Applications 24 Christoph Burger, Shengchao Yan, Wolfram Burgard and Christoph Stiller (CT). Proceedings. Society for Industrial and Applied Mathematics, Philadelphia, Jan. 1, 2019, pp. 38–45 (2019). https://doi.org/10.1137/1.9781611975758.7

4. Burger, C., Lauer, M.: Cooperative multiple vehicle trajectory planning using MIQP. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, Hawaii, USA, Nov. 2018, pp. 602–607 (2018). https://doi.org/10.1109/ITSC.2018.8569776

5. Burger, C., Schneider, T., Lauer, M.: Interaction aware cooperative trajectory planning for lane change maneuvers in dense traffic. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece, Sept. 2020, pp. 1–8 (2020). https://doi.org/10.1109/ITSC45102.2020.9294638

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3