Publisher
Springer Nature Switzerland
Reference10 articles.
1. Özer, İ, Efe, S.B., Özbay, H.: CNN/Bi-LSTM-based deep learning algorithm for classification of power quality disturbances by using spectrogram images. Int. Trans. Electr. Energy Syst. 31(12), e13204 (2021)
2. He, H., Liu, P., Zhou, H., et al.: Transformer optimization system design based on deep learning and evolutionary algorithm. J. Phys. Conf. Ser. 1827(1), 012084 (2021)
3. Aleem, S., Huda, N., Amin, R., et al.: Machine learning algorithms for depression: diagnosis, insights, and research directions. Electronics 11(7), 1111 (2022)
4. Yohapriyaa, M., Priyaa, M.Y.: A scoping study of social networks’ utilization of machine learning and deep learning techniques to detect depression. Linguist. Antverpiensia 2021(2), 2158–2171 (2021)
5. Wu, L.: Collaborative filtering recommendation algorithm for MOOC resources based on deep learning. Complexity 2021(46), 1–11 (2021)