Asymptotic Analysis

Author:

Marichal Jean-Luc,Zenaïdi Naïm

Abstract

AbstractThe asymptotic behavior of the gamma function for large values of its argument can be summarized as follows: for any a ≥ 0, we have the following asymptotic equivalences (see Titchmarsh (The Theory of Functions, 2nd edn. Oxford University Press, Oxford, 1939, Section 1.87)) $$\displaystyle \begin{aligned} \Gamma (x+a) ~\sim ~ x^a\,\Gamma (x) \mbox{as }x\to \infty {\,},\end{aligned} $$ Γ ( x + a ) x a Γ ( x ) as x , $$\displaystyle \begin{aligned}\Gamma (x) ~\sim ~ \sqrt {2\pi }{\,}e^{-x}x^{x-\frac {1}{2}} \mbox{as }x\to \infty {\,},\end{aligned} $$ Γ ( x ) 2 π e x x x 1 2 as x , $$\displaystyle \begin{aligned}\Gamma (x+1) ~\sim ~ \sqrt {2\pi x}{\,}e^{-x}x^x \mbox{as }x\to \infty {\,}, \end{aligned} $$ Γ ( x + 1 ) 2 π x e x x x as x , where both formulas (6.2) and (6.3) are known by the name Stirling’s formula.

Publisher

Springer International Publishing

Reference36 articles.

1. T. M. Apostol. An elementary view of Euler’s summation formula. Amer Math Monthly, 106(5):409–418, 1999.

2. E. Artin. The gamma function. Dover Books on Mathematics. Dover Publications Inc., New York, 2015.

3. I. S. Berezin and N. P. Shidkov. Computing methods. Vols. I, II. Pergamon Press, London, 1965.

4. I. V. Blagouchine. Expansions of generalized Euler’s constants into the series of polynomials in π −2 and into the formal enveloping series with rational coefficients only. J. Number Theory, 158: 365–396, 2016.

5. I. V. Blagouchine. A note on some recent results for the Bernoulli numbers of the second kind. J. Integer Seq., 20(3), Art. 17.3.8, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3