Publisher
Springer Nature Switzerland
Reference15 articles.
1. R. Maclin, D. Opitz, Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (2011)
2. A. Chlingaryan, S. Sukkarieh, B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 151, 61–69 (2018). https://doi.org/10.1016/j.compag.2018.05.012
3. CCIS;Y Zhang,2011
4. D. Kocev, C. Vens, J. Struyf, S. Džeroski, Ensembles of multi-objective decision trees, in European Conference on Machine Learning, (Springer, 2007), pp. 624–631
5. A. Taherkhani, G. Cosma, T.M. McGinnity, AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural networks to classify multi-class imbalanced datasets using transfer learning. Neurocomputing 404, 351–366 (2020)