1. Qiaoning, Y.: Research on Sensor Fault Diagnosis Method Based on Entropy. Beijing University of Chemical Technology (2016).
2. Daoliang, L., Ying, W., Jinxing, W., et al.: Recent advances in sensor fault diagnosis: a review. Sens. Actuators, A 309, 111990 (2020)
3. Zhenhua, X., Fengchao, Z., Dan, T.: Research on visual data mining based on Petri net. J. Liaocheng Univer. (Nat. Sci. Ed.) 23(03), 96–99 (2010)
4. Zhan, B., Shihong, M., Yanbin, S., et al.: An improved fuzzy Petri net fault diagnosis model considering the logical correlation of alarm information. Electric. Appl. 34(16) (2015)
5. Peijie, L., Bo, Y., Hongguang, L.: Conditional state fuzzy petri Net based on association rules and its application in fault diagnosis. J. Chem. Ind. 69(08), 3517–3527 (2018)