Reactive Cleaning and Active Filtration in Continuous Steel Casting

Author:

Spitzenberger Andy,Bauer Katrin,Schwarze Rüdiger

Abstract

AbstractBasic fluid dynamic processes of melt filtration have been investigated in order to increase the performance and efficiency of filtration systems in steelmaking, especially for continuous steel casting. Numerical simulations have been performed to investigate the interactions between filter structures and the mean melt flow, the development of endogenous non-metallic inclusion (NMI) populations in the flow, and inclusion removal from the melt. For this purpose, Euler–Lagrange models of the particle-laden flow have been developed. As a major finding, the reactive cleaning process of the melt has been proven to be a very efficient cleaning method. Here, inclusion removal is strongly improved by the lifting action of reactively generated gas bubbles at the NMI surfaces. Details of the reactive cleaning process and the combination of reactive cleaning and active filtration have been investigated, too. The prediction quality of the numerical models with regard to fluid flow and the efficiency of the employed filtration systems have been successfully examined by comparing numerical simulations with the results from experimental investigations in different water model experiments and the steel casting simulator.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3