Author:
Spitzenberger Andy,Bauer Katrin,Schwarze Rüdiger
Abstract
AbstractBasic fluid dynamic processes of melt filtration have been investigated in order to increase the performance and efficiency of filtration systems in steelmaking, especially for continuous steel casting. Numerical simulations have been performed to investigate the interactions between filter structures and the mean melt flow, the development of endogenous non-metallic inclusion (NMI) populations in the flow, and inclusion removal from the melt. For this purpose, Euler–Lagrange models of the particle-laden flow have been developed. As a major finding, the reactive cleaning process of the melt has been proven to be a very efficient cleaning method. Here, inclusion removal is strongly improved by the lifting action of reactively generated gas bubbles at the NMI surfaces. Details of the reactive cleaning process and the combination of reactive cleaning and active filtration have been investigated, too. The prediction quality of the numerical models with regard to fluid flow and the efficiency of the employed filtration systems have been successfully examined by comparing numerical simulations with the results from experimental investigations in different water model experiments and the steel casting simulator.
Publisher
Springer International Publishing