Publisher
Springer Nature Switzerland
Reference17 articles.
1. Guttikunda, S.K., et al.: Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmos. Pollut. Res. 10, 941–953 (2019)
2. Pak, U., et al.: Deep learning-based PM2.5 prediction considering the spatiotem-poral correlations: a case study of Beijing, China. Sci. Total Environ. S0048-9697(19)33481-3(2019). https://doi.org/10.1016/j.scitotenv.2019.07.367
3. Shrivallabha, S., Nelavigi Kumaresh, P.: Time series analysis of atmospheric particulate matter of Bengaluru City. Int. J. Sci. Res. Math. Stat. Sci. 6(5), 83–85 (2019)
4. Pérez, P., Trier, A., Reyes, J.: Prediction of PM2.5 concentra-tions several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 34, 1189–1196 (2000)
5. Xiao, F., Mei, Y., Fan, H., Fan, G., Al-Qaness, M.A.A.: An improved deep learning model for predicting daily PM2.5 concentration. Sci. Rep. 10, 20988 (2020). https://doi.org/10.1038/s41598-020-77757-w