Author:
Bhati Amit,Choudhary Karan,Jain Samir,Gour Neha,Khanna Pritee,Ojha Aparajita,Werghi Naoufel
Publisher
Springer Nature Switzerland
Reference18 articles.
1. Adem, K.: Exudate detection for diabetic retinopathy with circular hough transformation and convolutional neural networks. Expert Syst. Appl. 114, 289–295 (2018)
2. Devaraj, D., Suma, R., Kumar, S.P.: A survey on segmentation of exudates and microaneurysms for early detection of diabetic retinopathy. Mater. Today: Proc. 5(4), 10845–10850 (2018)
3. Guo, S., Wang, K., Kang, H., Liu, T., Gao, Y., Li, T.: Bin loss for hard exudates segmentation in fundus images. Neurocomputing 392, 314–324 (2020)
4. Guo, T., Yang, J., Yu, Q.: Diabetic retinopathy lesion segmentation using deep multi-scale framework. Biomed. Signal Process. Control 105050 (2023)
5. Huang, S., Li, J., Xiao, Y., Shen, N., Xu, T.: RTNet: relation transformer network for diabetic retinopathy multi-lesion segmentation. IEEE Trans. Med. Imaging 41(6), 1596–1607 (2022)