Publisher
Springer International Publishing
Reference25 articles.
1. Aitken, A.C.: On least squares and linear combination of observations. Proc. R. Soc. Edinb. 55, 42–48 (1936)
2. Andrus, M., Spitzer, E., Brown, J., Xiang, A.: What we can’t measure, we can’t understand: challenges to demographic data procurement in the pursuit of fairness. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 249–260 (2021)
3. Bellamy, R.K.E., et al.: AI Fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias (2018). https://arxiv.org/abs/1810.01943
4. Box, G.E.: Use and abuse of regression. Technometrics 8(4), 625–629 (1966)
5. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint arXiv:2010.04053 (2020)