Integration of Machine Learning Techniques as Auxiliary Diagnosis of Inherited Metabolic Disorders: Promising Experience with Newborn Screening Data
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-30146-0_23
Reference19 articles.
1. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newslett. 6(1), 20–29 (2004)
2. Baumgartner, C., Böhm, C., Baumgartner, D.: Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inform. 38(2), 89–98 (2005)
3. Baumgartner, C., et al.: Supervised machine learning techniques for the classification of metabolic disorders in newborns. Bioinformatics 20(17), 2985–2996 (2004)
4. Van den Bulcke, T., et al.: Data mining methods for classification of medium-chain Acyl-CoA dehydrogenase deficiency (MCADD) using non-derivatized tandem MS neonatal screening data. J. Biomed. Inform. 44(2), 319–325 (2011)
5. Chace, D., DiPerna, J., Naylor, E.: Laboratory integration and utilization of tandem mass spectrometry in neonatal screening: a model for clinical mass spectrometry in the next millennium. Acta Paediatr. 88, 45–47 (1999)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The significance of machine learning in neonatal screening for inherited metabolic diseases;Frontiers in Pediatrics;2024-03-20
2. Deep Learning and Explainable Artificial Intelligence for Improving Specificity and Detecting Metabolic Patterns in Newborn Screening;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05
3. Is Our Newborn Screening Working Well? A Literature Review of Quality Requirements for Newborn Blood Spot Screening (NBS) Infrastructure and Procedures;International Journal of Neonatal Screening;2023-06-22
4. Machine Learning Methods Improve Specificity in Newborn Screening for Isovaleric Aciduria;Metabolites;2023-02-18
5. Opportunities and challenges in machine learning‐based newborn screening—A systematic literature review;JIMD Reports;2022-03-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3