Author:
Suter Yannick,Jungo Alain,Rebsamen Michael,Knecht Urspeter,Herrmann Evelyn,Wiest Roland,Reyes Mauricio
Publisher
Springer International Publishing
Reference26 articles.
1. Awad, A.W., et al.: Impact of removed tumor volume and location on patient outcome in glioblastoma. J. Neuro Oncol. 135(1), 161–171 (2017).
https://doi.org/10.1007/s11060-017-2562-1
2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017).
https://doi.org/10.1038/sdata.2017.117
3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017).
https://doi.org/10.1038/sdata.2017.117
4. Bakas, S., Reyes, M., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. ArXiv e-prints, November 2018
5. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017).
https://doi.org/10.1038/sdata.2017.117
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献