Author:
El-Geneidy Ayman,Mukherjee Sumitra,Darwiche Aiman
Publisher
Springer International Publishing
Reference62 articles.
1. Ebrahimzadeh, E., Pooyan, M., Bijar, A.: A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0081896
2. Murukesan, L., Murugappan, M., Iqbal, M.: Sudden cardiac death prediction using ECG signal derivative (Heart Rate Variability): a review. 2013 IEEE 9th international colloquium on signal processing and its applications. (2013) https://doi.org/10.1109/cspa.2013.6530054
3. Murukesan, L., Murugappan, M., Iqbal, M., Saravanan, K.: Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J. Med. Imaging Health Inf. 4, 521–532 (2014)
4. Ayesta, A., Martínez-Sellés, H., Bayés de Luna, A., Martínez-Sellés, M.: Prediction of sudden death in elderly patients with heart failure. J. Geriatr. Cardiol. JGC 15, 185–192 (2018)
5. Devi, R., Tyagi, H.K., Kumar, D.: Heart rate variability analysis for early stage prediction of sudden cardiac death. World Acad. Sci. Eng. Technol. 10, 432–435 (2016)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HDP-IoT: An IoT Framework for Cardiac Status Prediction System using Machine Learning;2022 International Conference on Inventive Computation Technologies (ICICT);2022-07-20