Publisher
Springer Nature Switzerland
Reference25 articles.
1. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
2. Maczuga, P., Paszyński, M.: Influence of activation functions on the convergence of physics-informed neural networks for 1D wave equation. In: Computational Science – ICCS 2023: 23rd International Conference, Prague, Czech Republic, July 3-5, 2023, Proceedings, Part I, pp. 74–88 (2023)
3. Kingma, D.P., Lei Ba, J.: ADAM: a method for stochastic optimization (2014). arXiv:1412.6980
4. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization arxiv.org/abs/1711.05101 (2019)
5. Chen, X., et al.: Symbolic Discovery of Optimization Algorithms, arxiv.org/abs/2302.06675 (2023)