Cells and Subgrains. The Role of Cold Work

Author:

Sandström Rolf

Abstract

AbstractIn almost all metals and alloys, dislocations are concentrated to narrow regions after plastic deformation that divide the material into cells or subgrains. The cell walls consist of tangles whereas the subgrains are surrounded by thin regular networks of dislocations. The cells are transferred to subgrains with increasing temperature. Although these substructures have been analyzed for many years, basic models of their development have only appeared recently. Models for substructures are presented for plastic deformation at constant stress and at constant strain rate. During straining the dislocations can move in opposite directions creating a polarized structure, where the possibility for recovery of dislocations is reduced. This can be expressed in term of a back stress. Its presence explains why creep curves at near ambient temperatures could have an appearance that is similar to that at elevated temperatures. It is also the basis for the effect of cold work on creep. The models can quantitatively describe why the creep rate can be reduced by up to six orders of magnitude for Cu after cold work.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3