Foundation Models for Text Generation

Author:

Paaß Gerhard,Giesselbach Sven

Abstract

AbstractThis chapter discusses Foundation Models for Text Generation. This includes systems for Document Retrieval, which accept a query and return an ordered list of text documents from a document collection, often evaluating the similarity of embeddings to retrieve relevant text passages. Question Answering systems are given a natural language question and must provide an answer, usually in natural language. Machine Translation models take a text in one language and translate it into another language. Text Summarization systems receive a long document and generate a short summary covering the most important contents of the document. Text Generation models use an autoregressive Language Model to generate a longer story, usually starting from an initial text input. Dialog systems have the task of conducting a dialog with a human partner, typically not limited to a specific topic.

Publisher

Springer International Publishing

Reference270 articles.

1. S. Aarohi and R. Abhinav. BIG-bench. Google, June 20, 2022. url:https://github.com/google/BIG-bench/blob/936c4a5876646966344349b28ae187c556938ec4/docs/paper/BIG-bench. pdf (visited on 06/20/2022).

2. Z. Abbasiyantaeb and S. Momtazi. “Text-Based Question Answering from Information Retrieval and Deep Neural Network Perspectives: A Survey”. 2020. arXiv: 2002.06612.

3. D. Adiwardana et al. “Towards a Human-like Open-Domain Chatbot”. 2020. arXiv: 2001.09977.

4. A. Aghajanyan, A. Shrivastava, A. Gupta, N. Goyal, L. Zettlemoyer, and S. Gupta. “Better Fine-Tuning by Reducing Representational Collapse”. Aug. 6, 2020. arXiv: 2008.03156.

5. F. Akhbardeh et al. “Findings of the 2021 Conference on Machine Translation (WMT21)”. In: Sixth Conf. Mach. Transl. Pp 1–88 Assoc. Comput. Linguist. (Nov. 10, 2021), p. 88.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3