25 Models in the COVID-19 Pandemic

Author:

Imai Natsuko,Baguelin Marc,Ferguson Neil M.

Abstract

AbstractThe scale and impact of the COVID-19 pandemic have challenged policymakers globally. Decisions on implementing socially and economically disruptive control measures have often had to be made on limited quantitative evidence. Epidemiological analysis and mathematical modeling are powerful tools for systematically synthesizing the knowns and unknowns to highlight key knowledge gaps and provide quantitative insights into potential policy options. The pandemic has reinforced the role of modeling and advanced analytics in informing policy responses. This chapter explores the advanced analytics and mathematical modeling used during the COVID-19 pandemic, focusing on key retrospective analyses and prospective modeling approaches.

Publisher

Springer International Publishing

Reference118 articles.

1. Abueg M, Hinch R, Wu N, Liu L, Probert W, Wu A, et al. Modeling the effect of exposure notification and non-pharmaceutical interventions on COVID-19 transmission in Washington state. NPJ Digit Med. 2021;4(1):49. https://doi.org/10.1038/s41746-021-00422-7.

2. Academy of Medical Sciences. Coronavirus: preparing for challenges this winter. London: The Academy of Medical Sciences; 2020. https://acmedsci.ac.uk/policy/policy-projects/coronavirus-preparing-for-challenges-this-winter. Accessed 7 Apr 2022.

3. Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med. 2020;26(11):1714–9. https://doi.org/10.1038/s41591-020-1092-0.

4. Ali ST, Wang L, Lau EHY, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 2020;369(6507):1106–9. https://doi.org/10.1126/science.abc9004.

5. Australian Government. Impact of COVID-19 theoretical modelling of how the health system can respond. Canberra. 2020a. https://www.pm.gov.au/sites/default/files/files/covid19-icu-modelling-summary.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3