1. Arazo, E., Ortego, D., Albert, P., O’Connor, N., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321 (2019)
2. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242 (2017)
3. Atkinson, G., Metsis, V.: Identifying label noise in time-series datasets. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 238–243 (2020)
4. Barsim, K.S., Yang, B.: Toward a semi-supervised non-intrusive load monitoring system for event-based energy disaggregation. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 58–62 (2015)
5. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. arXiv:1905.02249 (2019)